Age-Gender-Country-Specific Death Rates Modelling and Forecasting: A Linear Mixed-Effects Model

Authors

Reza Dastranj

Martin Kolář

Published

January 3, 2023

Abstract

A linear mixed-effects (LME) model is proposed for modelling and forecasting single and multi-population age-specific death rates (ASDRs). The innovative approach that we take in this study treats age, the interaction between gender and age, their interactions with predictors, and cohort as fixed effects. Furthermore, we incorporate additional random effects to account for variations in the intercept, predictor coefficients, and cohort effects among different age groups of females and males across various countries. In the single-population case, we will see how the random effects of intercept and slope change over different age groups. We will show that the LME model is identifiable. Using simulating parameter uncertainty in the LME model, we will calculate 95% uncertainty intervals for death rate forecasts. We will use data from the Human Mortality Database (HMD) to illustrate the procedure. We assess the predictive performance of the LME model in comparison to the Lee-Carter (LC) models fitted to individual populations. Additionally, we evaluate the predictive accuracy of the LME model relative to the Li-Lee (LL) model. Our results indicate that the LME model provides a more precise representation of observed mortality rates within the HMD, demonstrates robustness in calibration rate selection, and exhibits superior performance when contrasted with the LC and LL models.

Keywords: Life insurance, Mortality forecasting, Restricted maximum likelihood, Model selection, Random walks with drift.

For more details, refer to the related paper: Age-Gender-Country-Specific Death Rates Modelling and Forecasting: A Linear Mixed-Effects Model:

https://doi.org/10.48550/arXiv.2311.18668

Affiliation

Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Load packages

First load the packages to be used

library(data.table)     # Efficient data manipulation
library(dplyr)          # Data manipulation and transformation
library(ggplot2)        # Data visualization
library(HMDHFDplus)     # Human Mortality Database-related functions
library(nlme)           # Linear and Nonlinear Mixed Effects Models
library(tidyverse)      # Collection of tidyverse packages
library(lme4)           # Linear Mixed-Effects Models
library(lmerTest)       # P-values for lmer models
library(forecast)       # Time series forecasting
library(car)            # Companion to Applied Regression
library(merTools)       # Tools for analyzing mixed-effects regression models

Dataset

Importing downloaded datasets from the Human Mortality Database (HMD) website

List of Dataset Filenames

mylistmf<-c(
  "AUS.fltper_5x1.txt","AUT.fltper_5x1.txt","BEL.fltper_5x1.txt",
  "BGR.fltper_5x1.txt","BLR.fltper_5x1.txt","CAN.fltper_5x1.txt",
  "CHE.fltper_5x1.txt","CHL.fltper_5x1.txt","CZE.fltper_5x1.txt",
  "DEUTE.fltper_5x1.txt","DEUTW.fltper_5x1.txt","DNK.fltper_5x1.txt",
  "ESP.fltper_5x1.txt","EST.fltper_5x1.txt","FIN.fltper_5x1.txt",
  "FRATNP.fltper_5x1.txt","GBR_NIR.fltper_5x1.txt","GBR_NP.fltper_5x1.txt",
  "GBR_SCO.fltper_5x1.txt","GBRTENW.fltper_5x1.txt","GRC.fltper_5x1.txt",
  "HKG.fltper_5x1.txt","HUN.fltper_5x1.txt","IRL.fltper_5x1.txt",
  "ISL.fltper_5x1.txt","ISR.fltper_5x1.txt","ITA.fltper_5x1.txt",
  "JPN.fltper_5x1.txt","LTU.fltper_5x1.txt","LUX.fltper_5x1.txt",
  "LVA.fltper_5x1.txt","NLD.fltper_5x1.txt","NOR.fltper_5x1.txt",
  "NZL_NM.fltper_5x1.txt","POL.fltper_5x1.txt","PRT.fltper_5x1.txt",
  "RUS.fltper_5x1.txt","SVK.fltper_5x1.txt","SVN.fltper_5x1.txt",
  "SWE.fltper_5x1.txt","TWN.fltper_5x1.txt","UKR.fltper_5x1.txt",
  "USA.fltper_5x1.txt",
  "AUS.mltper_5x1.txt","AUT.mltper_5x1.txt","BEL.mltper_5x1.txt",
  "BGR.mltper_5x1.txt","BLR.mltper_5x1.txt","CAN.mltper_5x1.txt",
  "CHE.mltper_5x1.txt","CHL.mltper_5x1.txt","CZE.mltper_5x1.txt",
  "DEUTE.mltper_5x1.txt","DEUTW.mltper_5x1.txt","DNK.mltper_5x1.txt",
  "ESP.mltper_5x1.txt","EST.mltper_5x1.txt","FIN.mltper_5x1.txt",
  "FRATNP.mltper_5x1.txt","GBR_NIR.mltper_5x1.txt","GBR_NP.mltper_5x1.txt",
  "GBR_SCO.mltper_5x1.txt","GBRTENW.mltper_5x1.txt","GRC.mltper_5x1.txt",
  "HKG.mltper_5x1.txt","HUN.mltper_5x1.txt","IRL.mltper_5x1.txt",
  "ISL.mltper_5x1.txt","ISR.mltper_5x1.txt","ITA.mltper_5x1.txt",
  "JPN.mltper_5x1.txt","LTU.mltper_5x1.txt","LUX.mltper_5x1.txt",
  "LVA.mltper_5x1.txt","NLD.mltper_5x1.txt","NOR.mltper_5x1.txt",
  "NZL_NM.mltper_5x1.txt","POL.mltper_5x1.txt","PRT.mltper_5x1.txt",
  "RUS.mltper_5x1.txt","SVK.mltper_5x1.txt","SVN.mltper_5x1.txt",
  "SWE.mltper_5x1.txt","TWN.mltper_5x1.txt","UKR.mltper_5x1.txt",
  "USA.mltper_5x1.txt"
)

Importing downloaded datasets of AUT, BEL, CHE, CZE, DNK, SWE

# Read and preprocess datasets for different countries
dat0 <- lapply(c(2, 45, 3, 46, 7, 50, 9, 52, 12, 55, 40, 83), function(i) {
  data.table::data.table(HMDHFDplus::readHMD(mylistmf[i]))[, logmx := log(mx)][1961 <= Year & Year <= 2019]
})

# Initialize matrices
M0 <- lapply(dat0, function(x) matrix(x$logmx, 59, 24, byrow = TRUE))
MB0 <- do.call(cbind, M0)

Construction of Age-Gender-Country-Specific Death Rates (ASDRs) DataFrame for Training Set

# Subset data
t <- 50
dat <- lapply(dat0, function(x) x[Year <= 2010])

# Initialize matrices for training set
M <- lapply(dat, function(x) matrix(x$logmx, t, 24, byrow = TRUE))
MB <- do.call(cbind, M)
# Calculate row means
l <- rowMeans(MB)

# Replicate row means
k1 <- rep(l, times = 288)

# Create a new vector 'k2' by squaring each element in 'k1'
k2 <- k1^2

# Initialize an empty list 'kcList' to store individual elements of kc
kcList <- list()

# Iterate through pairs of matrices in M
for (i in c(1,3,5,7,9,11)) {
  # Extract matrices corresponding to the pairs
  matrix1 <- M[[i]]
  matrix2 <- M[[i + 1]]
  
  # Combine the first 10 columns of each matrix, calculate row means, and replicate them 10 times
  result1 <- rep(rowMeans(cbind(matrix1[, 1:10], matrix2[, 1:10])), times = 10)

  # Combine the last 14 columns of each matrix, calculate row means, and replicate them 14 times
  result2 <- rep(rowMeans(cbind(matrix1[, 11:24], matrix2[, 11:24])), times = 14)

  
  # Repeat the results 2 times and append to kcList
  kcList <- c(kcList, rep(c(result1,result2),2))
}

# Combine all elements in kcList into a single vector 'kc1'
kc1 <- unlist(kcList)

# Create a new vector 'kc2' by squaring each element in 'kc1'
kc2 <- kc1^2



# Initialize vectors for training set
year <- rep(unique(dat[[9]]$Year), times = 288)
age_levels <- factor(c(0, 1, seq(5, 110, by = 5)))
age <- rep(c(0, 1, seq(5, 110, by = 5)), each = t, times = 12)
cohort <- year - age

# Initialize vectors for training set
gender_levels <- c("Female", "Male")
gender <- rep(gender_levels, each = 24 * t, times = 6)
yngold_levels <- c("Group[0,40]", "Group[45,110]")
yngold <- rep(c(rep("Group[0,40]", t * 10), rep("Group[45,110]", t * 14)), 12)
Country_levels <- c("AUT", "BEL", "CHE", "CZE", "DNK", "SWE")
Country <- rep(Country_levels, each = 48 * t)

# Combine results into data frame for training set
ASDRs <- data.frame(k1, k2, kc1, kc2, cohort, y = as.vector(MB), age, 
                    gender, Country, stringsAsFactors = FALSE)

# Convert factors to specified levels
ASDRs$age <- factor(ASDRs$age, levels = age_levels)
ASDRs$gender <- factor(ASDRs$gender, levels = gender_levels)
ASDRs$Country <- factor(ASDRs$Country, levels = Country_levels)
# Display the structure of the resulting data frame
str (ASDRs)
'data.frame':   14400 obs. of  9 variables:
 $ k1     : num  -4.25 -4.22 -4.23 -4.26 -4.26 ...
 $ k2     : num  18 17.8 17.9 18.2 18.1 ...
 $ kc1    : num  -6.47 -6.5 -6.5 -6.51 -6.55 ...
 $ kc2    : num  41.8 42.2 42.3 42.3 42.9 ...
 $ cohort : num  1961 1962 1963 1964 1965 ...
 $ y      : num  -3.53 -3.51 -3.57 -3.66 -3.67 ...
 $ age    : Factor w/ 24 levels "0","1","5","10",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ gender : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
 $ Country: Factor w/ 6 levels "AUT","BEL","CHE",..: 1 1 1 1 1 1 1 1 1 1 ...
# Display the first few rows of the resulting data frame
head(ASDRs)
         k1       k2       kc1      kc2 cohort         y age gender Country
1 -4.245925 18.02788 -6.466235 41.81219   1961 -3.525741   0 Female     AUT
2 -4.216007 17.77471 -6.497182 42.21337   1962 -3.511235   0 Female     AUT
3 -4.227902 17.87516 -6.501768 42.27299   1963 -3.567016   0 Female     AUT
4 -4.262577 18.16956 -6.506316 42.33215   1964 -3.663212   0 Female     AUT
5 -4.255166 18.10644 -6.548154 42.87832   1965 -3.670647   0 Female     AUT
6 -4.265926 18.19813 -6.525689 42.58461   1966 -3.713172   0 Female     AUT

Data Visualization

ASDRsnw<-ASDRs%>%  mutate(Age = age )
ASDRsnw<-ASDRsnw%>% mutate(year = as.numeric(as.character(year)) )

ggplot(ASDRsnw,aes(year, y,color=Age)) + geom_point(size=.15) +
  geom_line(linewidth=.1) + facet_grid(gender~Country)+
  xlab("Year") + ylab("ASDR (log)") + theme(axis.text.x=element_blank(), 
                                            axis.ticks.x=element_blank(), 
                                            axis.text.y=element_blank(), 
                                            axis.ticks.y=element_blank()  
  )+
  theme_bw()+guides(color = guide_legend(override.aes = list(size =3)))+
  theme(axis.text.x = element_text(angle=90, hjust=1))

kt Plot

ggplot(ASDRsnw,aes(year,y,color=Age))+ geom_point(size = .7) +
  geom_point(aes(x=year,y=k1),color="black",size=1)+
  geom_line(aes(x=year,y=k1),color="black",linewidth=.7)+
  xlab("Year") +  ylab("ASDR (log)")+
  theme_bw()+guides(color = guide_legend(override.aes = list(size =5)))

kct Plot

ggplot(ASDRsnw,aes(year,y,color=Age))+ geom_point(size = .3) +
  geom_point(aes(x=year,y=kc1,color=yngold),size=.6)+
  geom_line(aes(x=year,y=kc1,color=yngold),linewidth=.4)+
  scale_color_manual(values = c("Group[0,40]" = "red","Group[45,110]"="blue"))+
  xlab("Year") +  ylab("ASDR (log)")+ facet_grid(~Country)+
  theme_bw()+guides(color = guide_legend(override.aes = list(size =3)))+
  theme(axis.text.x = element_text(angle=90, hjust=1))+
  theme(legend.position="bottom")

Violin Plot

ggplot(ASDRsnw, aes(x=Country, y=y, fill=Country)) +
  geom_violin()+xlab("Country") +  ylab("Mortality (log)")+
  theme_bw()+
  # theme(axis.text = element_text(size = 15))+
  # theme(axis.title = element_text(size = 20)) +
  theme(legend.position="none")

Fit a Linear Mixed-Effects Model Using lmer Function

system.time(m1 <- lmer(y ~ age + gender:age +        # Fixed effects terms: main effects and interactions
               gender:age:I(kc1) +       # Interaction term involving kc1
               gender:age:I(kc2) +       # Interaction term involving kc2
               I(k1) + I(k2) + cohort +  # k1, k2, and cohort fixed effects terms
               (I(k1) + I(k2) + cohort | Country:gender:age),  # Random effects structure
               REML = TRUE,              # Use Restricted Maximum Likelihood estimation
               data = ASDRs              # Specify the data
           )
)
   user  system elapsed 
  80.06    1.41   90.47 
# Display a summary of the fitted linear mixed-effects model
print(summary(m1))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: y ~ age + gender:age + gender:age:I(kc1) + gender:age:I(kc2) +  
    I(k1) + I(k2) + cohort + (I(k1) + I(k2) + cohort | Country:gender:age)
   Data: ASDRs

REML criterion at convergence: -28552.7

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-11.7346  -0.4092   0.0077   0.4317   6.0333 

Random effects:
 Groups             Name        Variance  Std.Dev. Corr             
 Country:gender:age (Intercept) 6.546e-03 0.08091                   
                    I(k1)       6.734e-03 0.08206   0.02            
                    I(k2)       1.782e-02 0.13351   0.00 -0.06      
                    cohort      2.044e-06 0.00143  -0.04  0.17 -0.99
 Residual                       6.415e-03 0.08009                   
Number of obs: 14400, groups:  Country:gender:age, 288

Fixed effects:
                             Estimate Std. Error         df t value Pr(>|t|)
(Intercept)                 4.911e+01  2.146e+00  2.943e+03  22.883  < 2e-16
age1                       -2.115e+01  2.948e+00  1.337e+04  -7.175 7.63e-13
age5                       -1.957e+01  2.948e+00  1.319e+04  -6.640 3.26e-11
age10                      -4.041e+01  2.948e+00  1.347e+04 -13.709  < 2e-16
age15                      -5.627e+01  2.948e+00  1.329e+04 -19.091  < 2e-16
age20                      -6.506e+01  2.947e+00  1.355e+04 -22.073  < 2e-16
age25                      -5.643e+01  2.947e+00  1.337e+04 -19.146  < 2e-16
age30                      -6.075e+01  2.947e+00  1.358e+04 -20.615  < 2e-16
age35                      -6.031e+01  2.947e+00  1.365e+04 -20.469  < 2e-16
age40                      -6.091e+01  2.946e+00  1.342e+04 -20.674  < 2e-16
age45                      -5.506e+01  2.616e+00  1.329e+04 -21.045  < 2e-16
age50                      -4.949e+01  2.617e+00  1.336e+04 -18.911  < 2e-16
age55                      -4.749e+01  2.618e+00  1.341e+04 -18.137  < 2e-16
age60                      -4.421e+01  2.619e+00  1.347e+04 -16.881  < 2e-16
age65                      -4.389e+01  2.620e+00  1.352e+04 -16.752  < 2e-16
age70                      -4.306e+01  2.621e+00  1.356e+04 -16.432  < 2e-16
age75                      -4.250e+01  2.622e+00  1.361e+04 -16.211  < 2e-16
age80                      -4.348e+01  2.622e+00  1.365e+04 -16.580  < 2e-16
age85                      -4.388e+01  2.623e+00  1.366e+04 -16.728  < 2e-16
age90                      -4.465e+01  2.624e+00  1.369e+04 -17.016  < 2e-16
age95                      -4.537e+01  2.625e+00  1.369e+04 -17.286  < 2e-16
age100                     -4.626e+01  2.625e+00  1.376e+04 -17.619  < 2e-16
age105                     -4.713e+01  2.626e+00  1.377e+04 -17.947  < 2e-16
age110                     -4.777e+01  2.627e+00  1.377e+04 -18.187  < 2e-16
I(k1)                       3.091e-02  3.742e-01  1.969e+03   0.083 0.934192
I(k2)                       3.608e-03  3.968e-02  1.662e+03   0.091 0.927563
cohort                      8.767e-06  5.896e-04  1.380e+04   0.015 0.988136
age0:genderMale            -1.242e+00  2.948e+00  1.344e+04  -0.421 0.673455
age1:genderMale             3.062e-01  2.948e+00  1.391e+04   0.104 0.917270
age5:genderMale            -1.211e+01  2.948e+00  1.390e+04  -4.108 4.01e-05
age10:genderMale            4.591e-01  2.947e+00  1.387e+04   0.156 0.876214
age15:genderMale           -1.156e+01  2.947e+00  1.388e+04  -3.922 8.83e-05
age20:genderMale           -7.990e+00  2.946e+00  1.384e+04  -2.712 0.006705
age25:genderMale           -1.968e+01  2.946e+00  1.385e+04  -6.679 2.50e-11
age30:genderMale           -1.854e+01  2.946e+00  1.384e+04  -6.293 3.21e-10
age35:genderMale           -1.469e+01  2.945e+00  1.378e+04  -4.987 6.20e-07
age40:genderMale           -1.545e+01  2.945e+00  1.379e+04  -5.248 1.56e-07
age45:genderMale           -6.624e+00  2.216e+00  7.587e+03  -2.989 0.002810
age50:genderMale           -6.934e+00  2.219e+00  7.903e+03  -3.125 0.001784
age55:genderMale           -6.720e+00  2.221e+00  8.148e+03  -3.026 0.002490
age60:genderMale           -9.437e+00  2.223e+00  8.370e+03  -4.244 2.22e-05
age65:genderMale           -1.320e+01  2.225e+00  8.655e+03  -5.933 3.10e-09
age70:genderMale           -1.601e+01  2.228e+00  8.957e+03  -7.186 7.22e-13
age75:genderMale           -1.562e+01  2.230e+00  9.208e+03  -7.007 2.60e-12
age80:genderMale           -1.196e+01  2.232e+00  9.512e+03  -5.361 8.46e-08
age85:genderMale           -6.806e+00  2.233e+00  9.822e+03  -3.047 0.002316
age90:genderMale           -2.790e+00  2.235e+00  1.013e+04  -1.248 0.211973
age95:genderMale            1.915e-01  2.237e+00  1.044e+04   0.086 0.931782
age100:genderMale           2.226e+00  2.239e+00  1.069e+04   0.994 0.320033
age105:genderMale           3.165e+00  2.240e+00  1.101e+04   1.413 0.157705
age110:genderMale           3.344e+00  2.242e+00  1.131e+04   1.492 0.135756
age0:genderFemale:I(kc1)    1.407e+01  6.032e-01  8.594e+03  23.331  < 2e-16
age1:genderFemale:I(kc1)    8.306e+00  6.033e-01  1.356e+04  13.768  < 2e-16
age5:genderFemale:I(kc1)    9.379e+00  6.033e-01  1.315e+04  15.546  < 2e-16
age10:genderFemale:I(kc1)   3.757e+00  6.033e-01  1.366e+04   6.228 4.87e-10
age15:genderFemale:I(kc1)  -6.064e-01  6.034e-01  1.341e+04  -1.005 0.314857
age20:genderFemale:I(kc1)  -3.266e+00  6.034e-01  1.377e+04  -5.414 6.28e-08
age25:genderFemale:I(kc1)  -8.197e-01  6.034e-01  1.343e+04  -1.359 0.174317
age30:genderFemale:I(kc1)  -2.001e+00  6.034e-01  1.379e+04  -3.316 0.000917
age35:genderFemale:I(kc1)  -1.867e+00  6.034e-01  1.389e+04  -3.094 0.001976
age40:genderFemale:I(kc1)  -1.971e+00  6.034e-01  1.337e+04  -3.266 0.001093
age45:genderFemale:I(kc1)  -9.177e-01  1.264e+00  4.994e+03  -0.726 0.467977
age50:genderFemale:I(kc1)   2.850e+00  1.266e+00  5.282e+03   2.251 0.024404
age55:genderFemale:I(kc1)   3.771e+00  1.268e+00  5.520e+03   2.974 0.002948
age60:genderFemale:I(kc1)   5.746e+00  1.270e+00  5.698e+03   4.526 6.12e-06
age65:genderFemale:I(kc1)   5.541e+00  1.271e+00  5.970e+03   4.359 1.33e-05
age70:genderFemale:I(kc1)   5.850e+00  1.273e+00  6.267e+03   4.596 4.39e-06
age75:genderFemale:I(kc1)   5.955e+00  1.274e+00  6.488e+03   4.673 3.03e-06
age80:genderFemale:I(kc1)   4.907e+00  1.276e+00  6.801e+03   3.846 0.000121
age85:genderFemale:I(kc1)   4.297e+00  1.277e+00  7.155e+03   3.364 0.000772
age90:genderFemale:I(kc1)   3.462e+00  1.278e+00  7.482e+03   2.708 0.006779
age95:genderFemale:I(kc1)   2.748e+00  1.280e+00  7.849e+03   2.147 0.031806
age100:genderFemale:I(kc1)  2.002e+00  1.281e+00  8.053e+03   1.563 0.118053
age105:genderFemale:I(kc1)  1.329e+00  1.282e+00  8.449e+03   1.036 0.300083
age110:genderFemale:I(kc1)  8.569e-01  1.283e+00  8.829e+03   0.668 0.504321
age0:genderMale:I(kc1)      1.361e+01  6.032e-01  1.367e+04  22.562  < 2e-16
age1:genderMale:I(kc1)      8.627e+00  6.033e-01  1.357e+04  14.300  < 2e-16
age5:genderMale:I(kc1)      6.017e+00  6.033e-01  1.337e+04   9.974  < 2e-16
age10:genderMale:I(kc1)     3.596e+00  6.033e-01  1.366e+04   5.960 2.58e-09
age15:genderMale:I(kc1)    -4.102e+00  6.034e-01  1.342e+04  -6.799 1.10e-11
age20:genderMale:I(kc1)    -5.778e+00  6.034e-01  1.371e+04  -9.576  < 2e-16
age25:genderMale:I(kc1)    -6.704e+00  6.034e-01  1.351e+04 -11.110  < 2e-16
age30:genderMale:I(kc1)    -7.736e+00  6.034e-01  1.369e+04 -12.820  < 2e-16
age35:genderMale:I(kc1)    -6.270e+00  6.034e-01  1.387e+04 -10.390  < 2e-16
age40:genderMale:I(kc1)    -6.520e+00  6.034e-01  1.342e+04 -10.806  < 2e-16
age45:genderMale:I(kc1)    -7.331e+00  1.264e+00  5.002e+03  -5.798 7.11e-09
age50:genderMale:I(kc1)    -3.531e+00  1.266e+00  5.296e+03  -2.789 0.005311
age55:genderMale:I(kc1)    -2.050e+00  1.268e+00  5.502e+03  -1.617 0.105939
age60:genderMale:I(kc1)    -1.769e+00  1.270e+00  5.705e+03  -1.393 0.163628
age65:genderMale:I(kc1)    -4.656e+00  1.271e+00  5.972e+03  -3.663 0.000251
age70:genderMale:I(kc1)    -6.506e+00  1.273e+00  6.267e+03  -5.112 3.29e-07
age75:genderMale:I(kc1)    -6.217e+00  1.274e+00  6.498e+03  -4.879 1.09e-06
age80:genderMale:I(kc1)    -4.385e+00  1.276e+00  6.825e+03  -3.437 0.000591
age85:genderMale:I(kc1)    -9.693e-01  1.277e+00  7.140e+03  -0.759 0.447914
age90:genderMale:I(kc1)     1.343e+00  1.278e+00  7.469e+03   1.050 0.293708
age95:genderMale:I(kc1)     2.978e+00  1.280e+00  7.861e+03   2.327 0.019998
age100:genderMale:I(kc1)    3.805e+00  1.281e+00  8.103e+03   2.971 0.002980
age105:genderMale:I(kc1)    3.842e+00  1.282e+00  8.435e+03   2.996 0.002740
age110:genderMale:I(kc1)    3.491e+00  1.283e+00  8.831e+03   2.720 0.006536
age0:genderFemale:I(kc2)    9.100e-01  4.283e-02  8.697e+03  21.248  < 2e-16
age1:genderFemale:I(kc2)    4.599e-01  4.283e-02  1.290e+04  10.738  < 2e-16
age5:genderFemale:I(kc2)    5.645e-01  4.284e-02  1.256e+04  13.177  < 2e-16
age10:genderFemale:I(kc2)   1.859e-01  4.285e-02  1.304e+04   4.338 1.45e-05
age15:genderFemale:I(kc2)  -1.000e-01  4.286e-02  1.283e+04  -2.334 0.019606
age20:genderFemale:I(kc2)  -2.969e-01  4.287e-02  1.319e+04  -6.926 4.52e-12
age25:genderFemale:I(kc2)  -1.213e-01  4.287e-02  1.291e+04  -2.829 0.004675
age30:genderFemale:I(kc2)  -1.955e-01  4.288e-02  1.326e+04  -4.558 5.21e-06
age35:genderFemale:I(kc2)  -1.769e-01  4.289e-02  1.339e+04  -4.125 3.72e-05
age40:genderFemale:I(kc2)  -1.702e-01  4.290e-02  1.291e+04  -3.968 7.30e-05
age45:genderFemale:I(kc2)  -3.404e-01  2.483e-01  3.605e+03  -1.371 0.170454
age50:genderFemale:I(kc2)   3.492e-01  2.487e-01  3.812e+03   1.404 0.160397
age55:genderFemale:I(kc2)   4.717e-01  2.492e-01  3.992e+03   1.893 0.058445
age60:genderFemale:I(kc2)   8.151e-01  2.496e-01  4.140e+03   3.266 0.001101
age65:genderFemale:I(kc2)   7.642e-01  2.500e-01  4.347e+03   3.056 0.002253
age70:genderFemale:I(kc2)   8.421e-01  2.504e-01  4.576e+03   3.363 0.000778
age75:genderFemale:I(kc2)   8.850e-01  2.508e-01  4.761e+03   3.529 0.000422
age80:genderFemale:I(kc2)   7.141e-01  2.512e-01  5.008e+03   2.843 0.004489
age85:genderFemale:I(kc2)   6.193e-01  2.516e-01  5.287e+03   2.462 0.013847
age90:genderFemale:I(kc2)   4.825e-01  2.519e-01  5.556e+03   1.915 0.055484
age95:genderFemale:I(kc2)   3.738e-01  2.522e-01  5.858e+03   1.482 0.138414
age100:genderFemale:I(kc2)  2.650e-01  2.526e-01  6.062e+03   1.049 0.294215
age105:genderFemale:I(kc2)  1.696e-01  2.529e-01  6.399e+03   0.671 0.502485
age110:genderFemale:I(kc2)  1.033e-01  2.532e-01  6.733e+03   0.408 0.683153
age0:genderMale:I(kc2)      8.745e-01  4.283e-02  1.300e+04  20.419  < 2e-16
age1:genderMale:I(kc2)      5.030e-01  4.283e-02  1.291e+04  11.744  < 2e-16
age5:genderMale:I(kc2)      3.386e-01  4.284e-02  1.275e+04   7.905 2.90e-15
age10:genderMale:I(kc2)     1.625e-01  4.285e-02  1.303e+04   3.794 0.000149
age15:genderMale:I(kc2)    -3.451e-01  4.286e-02  1.284e+04  -8.052 8.85e-16
age20:genderMale:I(kc2)    -4.698e-01  4.287e-02  1.314e+04 -10.960  < 2e-16
age25:genderMale:I(kc2)    -5.401e-01  4.287e-02  1.298e+04 -12.597  < 2e-16
age30:genderMale:I(kc2)    -6.194e-01  4.288e-02  1.317e+04 -14.443  < 2e-16
age35:genderMale:I(kc2)    -4.924e-01  4.289e-02  1.337e+04 -11.480  < 2e-16
age40:genderMale:I(kc2)    -4.922e-01  4.290e-02  1.296e+04 -11.472  < 2e-16
age45:genderMale:I(kc2)    -1.728e+00  2.483e-01  3.610e+03  -6.958 4.09e-12
age50:genderMale:I(kc2)    -9.759e-01  2.487e-01  3.820e+03  -3.923 8.89e-05
age55:genderMale:I(kc2)    -6.659e-01  2.492e-01  3.981e+03  -2.672 0.007568
age60:genderMale:I(kc2)    -5.706e-01  2.496e-01  4.144e+03  -2.286 0.022301
age65:genderMale:I(kc2)    -1.100e+00  2.500e-01  4.349e+03  -4.400 1.11e-05
age70:genderMale:I(kc2)    -1.449e+00  2.504e-01  4.575e+03  -5.786 7.67e-09
age75:genderMale:I(kc2)    -1.409e+00  2.508e-01  4.767e+03  -5.618 2.04e-08
age80:genderMale:I(kc2)    -1.035e+00  2.512e-01  5.023e+03  -4.119 3.87e-05
age85:genderMale:I(kc2)    -3.621e-01  2.516e-01  5.277e+03  -1.440 0.150037
age90:genderMale:I(kc2)     1.051e-01  2.519e-01  5.548e+03   0.417 0.676485
age95:genderMale:I(kc2)     4.462e-01  2.522e-01  5.866e+03   1.769 0.076980
age100:genderMale:I(kc2)    6.329e-01  2.526e-01  6.093e+03   2.506 0.012249
age105:genderMale:I(kc2)    6.665e-01  2.529e-01  6.389e+03   2.636 0.008416
age110:genderMale:I(kc2)    6.181e-01  2.532e-01  6.735e+03   2.441 0.014663
                              
(Intercept)                ***
age1                       ***
age5                       ***
age10                      ***
age15                      ***
age20                      ***
age25                      ***
age30                      ***
age35                      ***
age40                      ***
age45                      ***
age50                      ***
age55                      ***
age60                      ***
age65                      ***
age70                      ***
age75                      ***
age80                      ***
age85                      ***
age90                      ***
age95                      ***
age100                     ***
age105                     ***
age110                     ***
I(k1)                         
I(k2)                         
cohort                        
age0:genderMale               
age1:genderMale               
age5:genderMale            ***
age10:genderMale              
age15:genderMale           ***
age20:genderMale           ** 
age25:genderMale           ***
age30:genderMale           ***
age35:genderMale           ***
age40:genderMale           ***
age45:genderMale           ** 
age50:genderMale           ** 
age55:genderMale           ** 
age60:genderMale           ***
age65:genderMale           ***
age70:genderMale           ***
age75:genderMale           ***
age80:genderMale           ***
age85:genderMale           ** 
age90:genderMale              
age95:genderMale              
age100:genderMale             
age105:genderMale             
age110:genderMale             
age0:genderFemale:I(kc1)   ***
age1:genderFemale:I(kc1)   ***
age5:genderFemale:I(kc1)   ***
age10:genderFemale:I(kc1)  ***
age15:genderFemale:I(kc1)     
age20:genderFemale:I(kc1)  ***
age25:genderFemale:I(kc1)     
age30:genderFemale:I(kc1)  ***
age35:genderFemale:I(kc1)  ** 
age40:genderFemale:I(kc1)  ** 
age45:genderFemale:I(kc1)     
age50:genderFemale:I(kc1)  *  
age55:genderFemale:I(kc1)  ** 
age60:genderFemale:I(kc1)  ***
age65:genderFemale:I(kc1)  ***
age70:genderFemale:I(kc1)  ***
age75:genderFemale:I(kc1)  ***
age80:genderFemale:I(kc1)  ***
age85:genderFemale:I(kc1)  ***
age90:genderFemale:I(kc1)  ** 
age95:genderFemale:I(kc1)  *  
age100:genderFemale:I(kc1)    
age105:genderFemale:I(kc1)    
age110:genderFemale:I(kc1)    
age0:genderMale:I(kc1)     ***
age1:genderMale:I(kc1)     ***
age5:genderMale:I(kc1)     ***
age10:genderMale:I(kc1)    ***
age15:genderMale:I(kc1)    ***
age20:genderMale:I(kc1)    ***
age25:genderMale:I(kc1)    ***
age30:genderMale:I(kc1)    ***
age35:genderMale:I(kc1)    ***
age40:genderMale:I(kc1)    ***
age45:genderMale:I(kc1)    ***
age50:genderMale:I(kc1)    ** 
age55:genderMale:I(kc1)       
age60:genderMale:I(kc1)       
age65:genderMale:I(kc1)    ***
age70:genderMale:I(kc1)    ***
age75:genderMale:I(kc1)    ***
age80:genderMale:I(kc1)    ***
age85:genderMale:I(kc1)       
age90:genderMale:I(kc1)       
age95:genderMale:I(kc1)    *  
age100:genderMale:I(kc1)   ** 
age105:genderMale:I(kc1)   ** 
age110:genderMale:I(kc1)   ** 
age0:genderFemale:I(kc2)   ***
age1:genderFemale:I(kc2)   ***
age5:genderFemale:I(kc2)   ***
age10:genderFemale:I(kc2)  ***
age15:genderFemale:I(kc2)  *  
age20:genderFemale:I(kc2)  ***
age25:genderFemale:I(kc2)  ** 
age30:genderFemale:I(kc2)  ***
age35:genderFemale:I(kc2)  ***
age40:genderFemale:I(kc2)  ***
age45:genderFemale:I(kc2)     
age50:genderFemale:I(kc2)     
age55:genderFemale:I(kc2)  .  
age60:genderFemale:I(kc2)  ** 
age65:genderFemale:I(kc2)  ** 
age70:genderFemale:I(kc2)  ***
age75:genderFemale:I(kc2)  ***
age80:genderFemale:I(kc2)  ** 
age85:genderFemale:I(kc2)  *  
age90:genderFemale:I(kc2)  .  
age95:genderFemale:I(kc2)     
age100:genderFemale:I(kc2)    
age105:genderFemale:I(kc2)    
age110:genderFemale:I(kc2)    
age0:genderMale:I(kc2)     ***
age1:genderMale:I(kc2)     ***
age5:genderMale:I(kc2)     ***
age10:genderMale:I(kc2)    ***
age15:genderMale:I(kc2)    ***
age20:genderMale:I(kc2)    ***
age25:genderMale:I(kc2)    ***
age30:genderMale:I(kc2)    ***
age35:genderMale:I(kc2)    ***
age40:genderMale:I(kc2)    ***
age45:genderMale:I(kc2)    ***
age50:genderMale:I(kc2)    ***
age55:genderMale:I(kc2)    ** 
age60:genderMale:I(kc2)    *  
age65:genderMale:I(kc2)    ***
age70:genderMale:I(kc2)    ***
age75:genderMale:I(kc2)    ***
age80:genderMale:I(kc2)    ***
age85:genderMale:I(kc2)       
age90:genderMale:I(kc2)       
age95:genderMale:I(kc2)    .  
age100:genderMale:I(kc2)   *  
age105:genderMale:I(kc2)   ** 
age110:genderMale:I(kc2)   *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 147 > 12.
Use print(summary(m1), correlation=TRUE)  or
    vcov(summary(m1))        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 5 negative eigenvalues

Check for Heteroskedasticity and Assess Normality

# Add fitted values and residuals to the ASDRs data frame
ASDRs$fit <- fitted(m1)
ASDRs$res <- resid(m1)

# Set up a 1x2 plotting layout
par(mfrow = c(1, 2))

# Scatter plot to check for heteroskedasticity
plot(
  ASDRs$fit, ASDRs$res,
  main = "LME Model for the Twelve Populations",
  xlab = "Fitted Values", ylab = "Residuals",
  pch = 1, frame = FALSE, cex = 0.5, col = "black"
)

# Quantile-quantile plot to assess normality assumption
qqPlot(
  ASDRs$res,
  ylab = deparse(substitute())
)

[1] 9737 9698

Refine the Model

# Filter out data points with absolute residuals outside the range [-0.10, 0.10]
ASDRs2 <- ASDRs[abs(ASDRs$res) <= 0.10, ]

# Fit a linear mixed-effects model (LME) to the refined dataset ASDRs2
m2 <- lmer(y ~ age + gender:age +
             gender:age:kc1 + gender:age:kc2 + 
             k1 + k2 + cohort +
             (k1 + k2 + cohort | Country:gender:age),
           REML = TRUE,data = ASDRs2,
           control = lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
)
Loading required namespace: optimx
boundary (singular) fit: see help('isSingular')

Check for Heteroskedasticity and Assess Normality (Refined Model)

# Add fitted values and residuals to the ASDRs2 data frame
ASDRs2$fit <- fitted(m2)
ASDRs2$res <- resid(m2)

# Set up a 1x2 plotting layout
par(mfrow = c(1, 2))

# Scatter plot to check for heteroskedasticity
plot(ASDRs2$fit, ASDRs2$res,
  xlab = "Fitted Values", ylab = "Residuals",
  pch = 1, frame = FALSE, cex = 0.09, col = "black"
)

# Quantile-quantile plot to assess normality assumption
qqPlot(ASDRs2$res,
  ylab = deparse(substitute())
)

[1] 3305 7665

Backward Stepwise Selection

# Perform backward stepwise selection on the LME model m2
system.time(step_lme2 <- lmerTest::step(m2))
   user  system elapsed 
 590.18    4.66  743.14 

Performing backward stepwise model selection with linear mixed-effects models can be computationally intensive for several reasons:

  1. Complexity of the Model: LME models, especially those with a large number of fixed and random effects, can be computationally demanding. Backward stepwise model selection involves fitting and comparing multiple models, and the complexity of the model can significantly impact the time it takes to fit each model.

  2. Number of Observations: If your dataset has a large number of observations, the time required for model fitting can increase. More data points may lead to longer computation times.

# Extract the final model from the stepwise selection
m3 <- get_model(step_lme2)
# Display the summary of the final selected model m3
print(summary(m3))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: y ~ age + k2 + cohort + (k2 + cohort | Country:gender:age) +  
    age:gender + age:gender:kc1 + age:gender:kc2
   Data: ASDRs2
Control: lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))

REML criterion at convergence: -39467.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3602 -0.6248  0.0048  0.6190  3.1160 

Random effects:
 Groups             Name        Variance  Std.Dev.  Corr       
 Country:gender:age (Intercept) 4.408e-03 0.0663949            
                    k2          1.264e-03 0.0355529 -0.15      
                    cohort      1.476e-07 0.0003842 -0.03 -0.98
 Residual                       1.786e-03 0.0422659            
Number of obs: 12228, groups:  Country:gender:age, 288

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              4.987e+01  1.410e+00  1.124e+04  35.377  < 2e-16 ***
age1                    -2.255e+01  2.022e+00  1.149e+04 -11.151  < 2e-16 ***
age5                    -1.850e+01  2.147e+00  1.165e+04  -8.617  < 2e-16 ***
age10                   -4.242e+01  2.169e+00  1.171e+04 -19.556  < 2e-16 ***
age15                   -5.455e+01  2.048e+00  1.169e+04 -26.635  < 2e-16 ***
age20                   -6.148e+01  2.029e+00  1.145e+04 -30.305  < 2e-16 ***
age25                   -5.400e+01  1.929e+00  1.142e+04 -27.999  < 2e-16 ***
age30                   -6.075e+01  1.913e+00  1.140e+04 -31.762  < 2e-16 ***
age35                   -6.129e+01  1.899e+00  1.141e+04 -32.272  < 2e-16 ***
age40                   -6.282e+01  1.843e+00  1.143e+04 -34.083  < 2e-16 ***
age45                   -5.362e+01  1.630e+00  1.130e+04 -32.886  < 2e-16 ***
age50                   -4.808e+01  1.623e+00  1.128e+04 -29.625  < 2e-16 ***
age55                   -4.606e+01  1.623e+00  1.129e+04 -28.382  < 2e-16 ***
age60                   -4.240e+01  1.633e+00  1.126e+04 -25.966  < 2e-16 ***
age65                   -4.306e+01  1.625e+00  1.130e+04 -26.497  < 2e-16 ***
age70                   -4.308e+01  1.617e+00  1.129e+04 -26.637  < 2e-16 ***
age75                   -4.305e+01  1.619e+00  1.127e+04 -26.592  < 2e-16 ***
age80                   -4.404e+01  1.619e+00  1.129e+04 -27.198  < 2e-16 ***
age85                   -4.376e+01  1.617e+00  1.126e+04 -27.053  < 2e-16 ***
age90                   -4.446e+01  1.618e+00  1.121e+04 -27.474  < 2e-16 ***
age95                   -4.484e+01  1.617e+00  1.127e+04 -27.726  < 2e-16 ***
age100                  -4.565e+01  1.617e+00  1.128e+04 -28.224  < 2e-16 ***
age105                  -4.651e+01  1.618e+00  1.126e+04 -28.749  < 2e-16 ***
age110                  -4.716e+01  1.618e+00  1.128e+04 -29.150  < 2e-16 ***
k2                       6.051e-03  3.044e-03  5.934e+02   1.987 0.047339 *  
cohort                  -1.033e-03  2.334e-04  1.108e+04  -4.428 9.62e-06 ***
age0:genderMale         -6.683e-01  2.016e+00  1.151e+04  -0.332 0.740247    
age1:genderMale          9.203e-01  2.016e+00  1.155e+04   0.457 0.647997    
age5:genderMale         -1.279e+01  2.267e+00  1.172e+04  -5.642 1.72e-08 ***
age10:genderMale         3.220e+00  2.202e+00  1.176e+04   1.462 0.143689    
age15:genderMale        -1.235e+01  2.039e+00  1.166e+04  -6.057 1.43e-09 ***
age20:genderMale        -1.287e+01  2.013e+00  1.161e+04  -6.395 1.67e-10 ***
age25:genderMale        -2.007e+01  1.864e+00  1.153e+04 -10.768  < 2e-16 ***
age30:genderMale        -1.628e+01  1.852e+00  1.153e+04  -8.788  < 2e-16 ***
age35:genderMale        -1.189e+01  1.755e+00  1.149e+04  -6.773 1.33e-11 ***
age40:genderMale        -1.309e+01  1.736e+00  1.149e+04  -7.542 4.99e-14 ***
age45:genderMale        -5.245e+00  1.200e+00  1.016e+04  -4.370 1.25e-05 ***
age50:genderMale        -6.697e+00  1.190e+00  1.028e+04  -5.629 1.86e-08 ***
age55:genderMale        -6.570e+00  1.175e+00  1.016e+04  -5.590 2.33e-08 ***
age60:genderMale        -1.101e+01  1.194e+00  9.772e+03  -9.221  < 2e-16 ***
age65:genderMale        -1.381e+01  1.181e+00  1.011e+04 -11.693  < 2e-16 ***
age70:genderMale        -1.524e+01  1.165e+00  1.019e+04 -13.076  < 2e-16 ***
age75:genderMale        -1.470e+01  1.160e+00  1.026e+04 -12.673  < 2e-16 ***
age80:genderMale        -1.083e+01  1.160e+00  1.022e+04  -9.339  < 2e-16 ***
age85:genderMale        -6.387e+00  1.158e+00  1.015e+04  -5.516 3.54e-08 ***
age90:genderMale        -2.444e+00  1.159e+00  9.989e+03  -2.109 0.034987 *  
age95:genderMale         7.980e-02  1.159e+00  1.009e+04   0.069 0.945114    
age100:genderMale        1.961e+00  1.160e+00  1.018e+04   1.691 0.090872 .  
age105:genderMale        3.035e+00  1.159e+00  1.018e+04   2.618 0.008858 ** 
age110:genderMale        3.210e+00  1.160e+00  1.028e+04   2.768 0.005646 ** 
age0:genderFemale:kc1    1.354e+01  3.951e-01  1.089e+04  34.272  < 2e-16 ***
age1:genderFemale:kc1    7.705e+00  4.150e-01  1.174e+04  18.567  < 2e-16 ***
age5:genderFemale:kc1    9.263e+00  4.578e-01  1.171e+04  20.233  < 2e-16 ***
age10:genderFemale:kc1   2.956e+00  4.649e-01  1.175e+04   6.357 2.14e-10 ***
age15:genderFemale:kc1  -3.641e-01  4.167e-01  1.165e+04  -0.874 0.382241    
age20:genderFemale:kc1  -2.414e+00  4.231e-01  1.171e+04  -5.705 1.19e-08 ***
age25:genderFemale:kc1  -3.981e-01  3.797e-01  1.172e+04  -1.048 0.294461    
age30:genderFemale:kc1  -2.257e+00  3.733e-01  1.172e+04  -6.047 1.52e-09 ***
age35:genderFemale:kc1  -2.458e+00  3.670e-01  1.163e+04  -6.698 2.21e-11 ***
age40:genderFemale:kc1  -2.836e+00  3.420e-01  1.162e+04  -8.292  < 2e-16 ***
age45:genderFemale:kc1  -7.456e-01  6.637e-01  9.161e+03  -1.123 0.261311    
age50:genderFemale:kc1   3.112e+00  6.532e-01  9.211e+03   4.764 1.92e-06 ***
age55:genderFemale:kc1   4.039e+00  6.549e-01  9.043e+03   6.167 7.24e-10 ***
age60:genderFemale:kc1   6.420e+00  6.732e-01  8.172e+03   9.537  < 2e-16 ***
age65:genderFemale:kc1   5.397e+00  6.597e-01  8.901e+03   8.180 3.23e-16 ***
age70:genderFemale:kc1   4.978e+00  6.474e-01  9.184e+03   7.689 1.63e-14 ***
age75:genderFemale:kc1   4.677e+00  6.492e-01  9.140e+03   7.205 6.28e-13 ***
age80:genderFemale:kc1   3.665e+00  6.495e-01  9.254e+03   5.643 1.72e-08 ***
age85:genderFemale:kc1   3.579e+00  6.479e-01  9.166e+03   5.524 3.40e-08 ***
age90:genderFemale:kc1   2.804e+00  6.492e-01  8.952e+03   4.319 1.58e-05 ***
age95:genderFemale:kc1   2.365e+00  6.481e-01  9.204e+03   3.650 0.000264 ***
age100:genderFemale:kc1  1.692e+00  6.483e-01  9.281e+03   2.610 0.009062 ** 
age105:genderFemale:kc1  1.045e+00  6.485e-01  9.199e+03   1.611 0.107126    
age110:genderFemale:kc1  5.704e-01  6.488e-01  9.291e+03   0.879 0.379285    
age0:genderMale:kc1      1.324e+01  4.111e-01  1.172e+04  32.208  < 2e-16 ***
age1:genderMale:kc1      8.040e+00  3.889e-01  1.160e+04  20.676  < 2e-16 ***
age5:genderMale:kc1      5.546e+00  4.400e-01  1.166e+04  12.605  < 2e-16 ***
age10:genderMale:kc1     3.492e+00  4.080e-01  1.171e+04   8.558  < 2e-16 ***
age15:genderMale:kc1    -4.086e+00  3.882e-01  1.163e+04 -10.526  < 2e-16 ***
age20:genderMale:kc1    -6.331e+00  3.893e-01  1.172e+04 -16.262  < 2e-16 ***
age25:genderMale:kc1    -6.272e+00  3.734e-01  1.169e+04 -16.796  < 2e-16 ***
age30:genderMale:kc1    -7.082e+00  3.706e-01  1.159e+04 -19.107  < 2e-16 ***
age35:genderMale:kc1    -5.999e+00  3.368e-01  1.160e+04 -17.813  < 2e-16 ***
age40:genderMale:kc1    -6.697e+00  3.529e-01  1.155e+04 -18.974  < 2e-16 ***
age45:genderMale:kc1    -5.821e+00  6.733e-01  8.716e+03  -8.646  < 2e-16 ***
age50:genderMale:kc1    -3.121e+00  6.726e-01  9.018e+03  -4.641 3.52e-06 ***
age55:genderMale:kc1    -1.701e+00  6.576e-01  9.117e+03  -2.586 0.009719 ** 
age60:genderMale:kc1    -2.348e+00  6.636e-01  9.138e+03  -3.539 0.000404 ***
age65:genderMale:kc1    -5.278e+00  6.607e-01  9.156e+03  -7.989 1.53e-15 ***
age70:genderMale:kc1    -6.669e+00  6.553e-01  9.121e+03 -10.177  < 2e-16 ***
age75:genderMale:kc1    -6.645e+00  6.477e-01  9.327e+03 -10.259  < 2e-16 ***
age80:genderMale:kc1    -4.718e+00  6.473e-01  9.158e+03  -7.289 3.38e-13 ***
age85:genderMale:kc1    -1.334e+00  6.476e-01  9.122e+03  -2.061 0.039371 *  
age90:genderMale:kc1     9.694e-01  6.478e-01  9.059e+03   1.496 0.134588    
age95:genderMale:kc1     2.502e+00  6.490e-01  8.997e+03   3.854 0.000117 ***
age100:genderMale:kc1    3.268e+00  6.496e-01  9.089e+03   5.032 4.95e-07 ***
age105:genderMale:kc1    3.436e+00  6.485e-01  9.191e+03   5.299 1.19e-07 ***
age110:genderMale:kc1    3.079e+00  6.488e-01  9.262e+03   4.745 2.11e-06 ***
age0:genderFemale:kc2    8.571e-01  2.808e-02  1.064e+04  30.523  < 2e-16 ***
age1:genderFemale:kc2    4.254e-01  2.951e-02  1.162e+04  14.415  < 2e-16 ***
age5:genderFemale:kc2    5.490e-01  3.221e-02  1.174e+04  17.044  < 2e-16 ***
age10:genderFemale:kc2   1.348e-01  3.257e-02  1.173e+04   4.138 3.53e-05 ***
age15:genderFemale:kc2  -7.819e-02  2.901e-02  1.176e+04  -2.696 0.007038 ** 
age20:genderFemale:kc2  -2.261e-01  3.033e-02  1.116e+04  -7.456 9.55e-14 ***
age25:genderFemale:kc2  -8.835e-02  2.710e-02  1.150e+04  -3.260 0.001117 ** 
age30:genderFemale:kc2  -2.101e-01  2.668e-02  1.143e+04  -7.873 3.77e-15 ***
age35:genderFemale:kc2  -2.193e-01  2.610e-02  1.162e+04  -8.404  < 2e-16 ***
age40:genderFemale:kc2  -2.330e-01  2.423e-02  1.173e+04  -9.618  < 2e-16 ***
age45:genderFemale:kc2  -3.293e-01  1.297e-01  7.640e+03  -2.540 0.011114 *  
age50:genderFemale:kc2   3.964e-01  1.278e-01  7.674e+03   3.102 0.001928 ** 
age55:genderFemale:kc2   5.196e-01  1.283e-01  7.524e+03   4.050 5.17e-05 ***
age60:genderFemale:kc2   9.591e-01  1.324e-01  6.637e+03   7.244 4.83e-13 ***
age65:genderFemale:kc2   7.393e-01  1.294e-01  7.378e+03   5.713 1.15e-08 ***
age70:genderFemale:kc2   6.635e-01  1.269e-01  7.681e+03   5.229 1.75e-07 ***
age75:genderFemale:kc2   6.270e-01  1.272e-01  7.649e+03   4.928 8.47e-07 ***
age80:genderFemale:kc2   4.708e-01  1.273e-01  7.744e+03   3.699 0.000218 ***
age85:genderFemale:kc2   4.767e-01  1.270e-01  7.675e+03   3.753 0.000176 ***
age90:genderFemale:kc2   3.528e-01  1.273e-01  7.501e+03   2.771 0.005604 ** 
age95:genderFemale:kc2   3.000e-01  1.271e-01  7.711e+03   2.360 0.018290 *  
age100:genderFemale:kc2  2.071e-01  1.272e-01  7.774e+03   1.629 0.103378    
age105:genderFemale:kc2  1.178e-01  1.272e-01  7.710e+03   0.926 0.354511    
age110:genderFemale:kc2  5.115e-02  1.273e-01  7.786e+03   0.402 0.687793    
age0:genderMale:kc2      8.329e-01  2.907e-02  1.187e+04  28.653  < 2e-16 ***
age1:genderMale:kc2      4.580e-01  2.743e-02  1.176e+04  16.699  < 2e-16 ***
age5:genderMale:kc2      2.866e-01  3.085e-02  1.177e+04   9.292  < 2e-16 ***
age10:genderMale:kc2     1.550e-01  2.888e-02  1.171e+04   5.367 8.17e-08 ***
age15:genderMale:kc2    -3.395e-01  2.742e-02  1.168e+04 -12.380  < 2e-16 ***
age20:genderMale:kc2    -4.996e-01  2.767e-02  1.165e+04 -18.055  < 2e-16 ***
age25:genderMale:kc2    -4.979e-01  2.680e-02  1.114e+04 -18.577  < 2e-16 ***
age30:genderMale:kc2    -5.507e-01  2.629e-02  1.148e+04 -20.951  < 2e-16 ***
age35:genderMale:kc2    -4.689e-01  2.385e-02  1.170e+04 -19.658  < 2e-16 ***
age40:genderMale:kc2    -5.047e-01  2.501e-02  1.154e+04 -20.178  < 2e-16 ***
age45:genderMale:kc2    -1.406e+00  1.318e-01  6.915e+03 -10.666  < 2e-16 ***
age50:genderMale:kc2    -9.026e-01  1.316e-01  7.305e+03  -6.860 7.47e-12 ***
age55:genderMale:kc2    -6.075e-01  1.288e-01  7.557e+03  -4.718 2.42e-06 ***
age60:genderMale:kc2    -6.743e-01  1.299e-01  7.657e+03  -5.192 2.14e-07 ***
age65:genderMale:kc2    -1.219e+00  1.293e-01  7.643e+03  -9.424  < 2e-16 ***
age70:genderMale:kc2    -1.470e+00  1.284e-01  7.605e+03 -11.454  < 2e-16 ***
age75:genderMale:kc2    -1.477e+00  1.269e-01  7.777e+03 -11.636  < 2e-16 ***
age80:genderMale:kc2    -1.095e+00  1.269e-01  7.667e+03  -8.625  < 2e-16 ***
age85:genderMale:kc2    -4.303e-01  1.270e-01  7.642e+03  -3.388 0.000707 ***
age90:genderMale:kc2     3.439e-02  1.271e-01  7.596e+03   0.271 0.786675    
age95:genderMale:kc2     3.532e-01  1.273e-01  7.540e+03   2.774 0.005552 ** 
age100:genderMale:kc2    5.272e-01  1.274e-01  7.610e+03   4.137 3.56e-05 ***
age105:genderMale:kc2    5.872e-01  1.272e-01  7.705e+03   4.615 3.99e-06 ***
age110:genderMale:kc2    5.374e-01  1.273e-01  7.764e+03   4.222 2.45e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 146 > 12.
Use print(summary(m3), correlation=TRUE)  or
    vcov(summary(m3))        if you need it
optimizer (optimx) convergence code: 1 (none)
boundary (singular) fit: see help('isSingular')

Plot Backward Stepwise Selection Results

# Plot the results of backward stepwise selection
plot(step_lme2) 

Random Effects Means

# Compute the mean of random effects for each level in the 'Country:gender:age' grouping
mean_random_effect_1 <- mean(ranef(m3)$`Country:gender:age`[, 1])
mean_random_effect_2 <- mean(ranef(m3)$`Country:gender:age`[, 2])
mean_random_effect_3 <- mean(ranef(m3)$`Country:gender:age`[, 3])

# Output the results
print(paste("Random Effect Mean 1:", round(mean_random_effect_1, 10)))
[1] "Random Effect Mean 1: 0"
print(paste("Random Effect Mean 2:", round(mean_random_effect_2, 10)))
[1] "Random Effect Mean 2: 0"
print(paste("Random Effect Mean 3:", round(mean_random_effect_3, 10)))
[1] "Random Effect Mean 3: 0"

Type III Analysis of Variance (ANOVA) for Significance Testing (Final Model)

# Perform Type III Analysis of Variance (ANOVA) on the LME model 'm3'
anova_results <- anova(m3)
# Print the ANOVA results
print(anova_results)
Type III Analysis of Variance Table with Satterthwaite's method
                Sum Sq  Mean Sq NumDF   DenDF  F value    Pr(>F)    
age             4.3445 0.188893    23 10710.7 105.7391 < 2.2e-16 ***
k2              0.0071 0.007056     1   593.4   3.9497   0.04734 *  
cohort          0.0350 0.035019     1 11084.3  19.6031 9.622e-06 ***
age:gender      2.1127 0.088030    24 10698.1  49.2779 < 2.2e-16 ***
age:gender:kc1 11.9112 0.248151    48  9999.3 138.9108 < 2.2e-16 ***
age:gender:kc2 10.8334 0.225696    48  8825.7 126.3410 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summary of Type III Analysis of Variance (ANOVA) Results: This table provides a comprehensive overview of the ANOVA analysis conducted to assess the significance of the fixed terms in the LME model. The p-values associated with each fixed term indicate the strength of evidence against the null hypothesis of no significant effect. P-values less than 2.2e-16 are denoted as ‘***,’ signifying extremely high statistical significance.

Histograms of Random Effects for the Final LME Model

# Set up a 1x3 plot layout
op <- par(mfrow = c(1, 3))

# Plot histogram for random effect 'Intercept'
hist(ranef(m3)$`Country:gender:age`[,1], breaks = 12,
     col = "lightblue", border = "pink",
     main = "Intercept",
     xlab = NULL)

# Plot histogram for random effect 'I(kt2)'
hist(ranef(m3)$`Country:gender:age`[,2], breaks = 12,
     col = "lightblue", border = "pink",
     main = "I(kt2)",
     xlab = NULL)

# Plot histogram for random effect 'cohort'
hist(ranef(m3)$`Country:gender:age`[,3], breaks = 12,
     col = "lightblue", border = "pink",
     main = "cohort",
     xlab = NULL)

# Reset the plotting parameters to default
par(op)

Creation of New Dataset for the LME Model Prediction

# Use random walk with drift to forecast future values of k
k_forecast <- rwf(
  l,          # Time series data for forecasting
  h = 9,      # Forecast horizon (next 9 time points)
  drift = TRUE,  # Include a drift term in the random walk
  level = c(80, 95)  # Confidence levels for prediction intervals
)

# Extract the mean values of the forecast for the next 9 time points
k1 <- k_forecast$mean[1:9]

# Create a new vector 'k2' by squaring each element in 'k1'
k2<-k1^2


# Initialize an empty list 'kcList' to store individual elements of kc
kcList <- list()

# Iterate through pairs of matrices in M
for (i in c(1,3,5,7,9,11)) {
  # Extract matrices corresponding to the pairs
  matrix1 <- M[[i]]
  matrix2 <- M[[i + 1]]  # Adjust the index to access the second matrix
  
  # Combine the first 10 columns of each matrix and calculate row means
  result1 <- rowMeans(cbind(matrix1[, 1:10], matrix2[, 1:10]))
  
  # Append result1 to kcList
  kcList <- c(kcList, result1)

  # Combine the last 14 columns of each matrix and calculate row means
  result2 <- rowMeans(cbind(matrix1[, 11:24], matrix2[, 11:24]))

  # Append result2 to kcList
  kcList <- c(kcList, result2)
}

# Combine all elements in kcList into a single vector 'kc0'
kc0 <- unlist(kcList)

ar<-c()


# Iterate through 12 subsets of kc to forecast future values of kc
for (i in 1:12) {
  # Extract a subset of kc0 for the current iteration
  subset_kc0 <- kc0[((i-1)*50+1):(i*50)]
  
  # Use random walk with drift to forecast the next 9 values of kc
  kc_forecast <- rwf(
    subset_kc0,
    h = 9,
    drift = TRUE,
    level = c(80, 95)
  )
  
  # Extract the mean values from the forecast
  kc_forecast_values <- kc_forecast$mean[1:9]
  
  # Append the forecasted values to the 'ar' vector
  ar <- append(ar, kc_forecast_values)
}

# Initialize an empty list 'kcList' to store individual elements of kc
kcList <- list()

# Define the sequence of indices for iterating through 'ar'
indices <- seq(1, length(ar), by = 18)

# Iterate through the indices
for (i in indices) {
  # Extract the two consecutive blocks of 'ar'
  ar1 <- ar[i:(i + 8)]
  ar2 <- ar[(i + 9):(i + 17)]
  
  # Replicate and combine the blocks according to the specified pattern
  result1 <- rep(c(rep(ar1, 10), rep(ar2, 14)),  2)
  
  # Append the result to 'kcList'
  kcList <- c(kcList, result1)
}

# Combine all elements in kcList into a single vector 'kc1'
kc1 <- unlist(kcList)

# Create a new vector 'kc2' by squaring each element in 'kc1'
kc2<- kc1^2


# Initialize vectors for test set
year <- rep(2011:2019, times = 288)
age_levels <- factor(c(0, 1, seq(5, 110, by = 5)))
age <- rep(c(0, 1, seq(5, 110, by = 5)), each = 9, times = 12)
cohort <- year - age

# Initialize vectors for test set
gender_levels <- c("Female", "Male")
gender <- rep(gender_levels, each = 24 * 9, times = 6)
Country_levels <- c("AUT", "BEL", "CHE", "CZE", "DNK", "SWE")
Country <- rep(Country_levels, each = 48 * 9)

# Combine results into data frame for test set
newASDRs <- data.frame(k1, k2, kc1, kc2, cohort,y = as.vector(MB0[51:59,]), age,
                       gender, Country,stringsAsFactors = FALSE)

# Convert factors to specified levels
newASDRs$age <- factor(newASDRs$age, levels = age_levels)
newASDRs$gender <- factor(newASDRs$gender, levels = gender_levels)
newASDRs$Country <- factor(newASDRs$Country, levels = Country_levels)

# Add predictions using the LME model
newASDRs$pred <- predict(m3, newdata = newASDRs)

Simulating Parameter Uncertainty

# Measure the time taken for the prediction interval calculation
system.time({
  # Use the predictInterval function to obtain prediction intervals
  PI <- predictInterval(
    merMod = m3,                           # LME model
    newdata = newASDRs,                    # New data for prediction
    level = 0.95,                          # Confidence level
    n.sims = 10000,                        # Number of simulations
    stat = "mean",                         # Summary statistic (mean)
    type = "linear.prediction",            # Type of prediction
    include.resid.var = TRUE,              # Include residual variance
    seed = 1242                            # Seed for reproducibility
  )
})
   user  system elapsed 
  17.97    2.35   26.14 
# Extract and store the upper prediction limit in 'upr' column
newASDRs$upr <- PI$upr

# Extract and store the lower prediction limit in 'lwr' column
newASDRs$lwr <- PI$lwr

Evaluating Forecast Accuracy: Mean Squared Error for LME Model Predictions

# Compute Mean Squared Error (MSE) for LME Model Forecasting

# Initialize an empty vector to store MSE values
MSE_test_lme <- c()

# Iterate through the 12 data sets of predictions
for (n in 1:12) {
  # Extract predicted values for the specific set (9 years, 24 observations each)
  lme_predictions <- matrix(newASDRs$pred[(((n - 1) * (9 * 24)) + 1):(n * (9 * 24))], 9, 24, byrow = FALSE)

  # Extract actual values for the corresponding set
  actual_values <- M0[[n]][51:59,]

  # Calculate the residuals (prediction errors)
  lme_errors <- actual_values - lme_predictions

  # Compute MSE for the set and append to the vector
  MSE_test_lme_n <- sum(lme_errors[, 1:24]^2) / (24 * 9)
  MSE_test_lme <- append(MSE_test_lme, MSE_test_lme_n)
}

# Display the vector of MSE values
MSE_test_lme
 [1] 0.02354352 0.01912610 0.01296170 0.01704318 0.01819751 0.01851642
 [7] 0.01870164 0.01537664 0.03690819 0.02191939 0.02318679 0.01912486